

7 II Algorithmic Specified
Complexity

WINSTON EWERT, WILLIAM A. DEMBSKI, AND
ROBERT J. MARKS II

Abstract

Baylor University
Discovery Institute

Engineers like to think that they produce something different from that of a chaotic
system. The Eiffel tower is fundamentally different from the same components lying
in a heap on the ground. Mt . Rushmore is fundamentally different from a random
mountainside. But engineers lack a good method for quantifying this idea. This
has led some to reject the idea that engineered or designed systems can be detected.
Various methods have been proposed, each of which has various faults . Some have
trouble distinguishing noise from data, some are subjective, etc. For this study, con­
ditional Kolmogorov complexity is used to measure the degree of specification of an
object. The Kolmogorov complexity of an object is the length of the shortest com­
puter program required to describe that object. Conditional Kolmogorov complexity
is Kolmogorov complexity with access to a context. The program can extract in­
formation from the context in a variety of ways allowing more compression . The
more compressible an object is , the greater the evidence that the object is speci­
fied . Random noise is incompressible , and so compression indicates that the object
is not simply random noise . This model is intended to launch further dialog on use
of conditional Kolmogorov complexity in the measurement of specified complexity.

1 Introduction

Intuitively, humans identify objects such as the carved faces at Mount Rushmore as
qualitatively different from that of a random mountainside. However , quantifying this

131

132 Algorithmic Specified Complexity

Figure 7.1: T he faces of Mount Rushmore- Public Domain

concept in an objective manner has proved difficult . Both mountainsides are made
up of the same material components. They are both subject to the same physical
forces and will react the same to almost all physical tests. Yet, there does appear to
be something quite different about Mount Rushmore. There is a special something
about carved faces that separat es it from the rock it is carved in.

This "special something" is information. Information is what distinguishes
an empty hard disk from a full one. Information is the difference between random
scribbling and carefully printed prose. Information is the difference between car parts
strewn over a lawn and a working truck.

While humans operate using an intuitive concept of information, attempts to
develop a theory of information have thus far fallen short of the intuitive concept.
Claude Shannon developed what its today known as Shannon information theory
(Shannon et al. , 1950) . Shannon's concern was studying the problem of communi­
cation, that of sending information from one point to another. However, Shannon
explicitly avoided t he question of the meaningfulness of the information being trans­
mitted, thus not quite capturing the concept of information as defined in this paper.
In fact , under Shannon's model a random signal has the highest amount of informa­
tion, the precise opposite of the intuitive concept .

Another model of information is that of algorithmic information theory
(Chaitin, 1966; Solomonoff, 1960; Kolmogorov, 1968b). Techniques such as Kol­
mogorov complexity measure the complexity of an object as the minimum length
computer program required to recreate the object; Chaitin refers to such minimum
length programs as elegant (Chaitin, 2002). As with Shannon information, random
noise is the most complex because it requires a long computer program to describe.

Introduction 133

In contrast , simple patterns are not complex because a short computer program can
describe the pattern. But neither simple patterns nor random noise are considered
conceptual information. As with Shannon information, there is a disconnect between
Kolmogorov complexity and conceptual information.

Other models are based on algorithmic information theory, but also take into
account the computational resources required for the programs being run. Levin
complexity adds the log of the execution time to the complexity of the problem
(Levin, 1976) . Logical depth, on the other hand, is concerned with the execution
time of the shortest program (Bennett , 1988) . There is a class of objects which are
easy to describe but expensive to actually produce. It is argued (Bennett , 1988) that
objects in this class must have been produced over a long history. Such objects are
interesting, but do not seem to capture the intuitive concept of information in its
ent irety. English text or Mount Rushmore correspond to what is usually considered
as information, but it is not clear that they can be most efficiently described as long
runnmg programs.

One approach to information is specified complexity as expressed by Dembski
(Dembski , 1998) . Dembski 's concern is that of detecting design, the separation of
that which can be explained by chance or necessity from that which is the product of
intelligence. In order to infer design, an object must be both complex and specified.
Complexity refers, essentially, to improbability. The probability of any given object
depends on the chance hypothesis proposed to explain it . Improbability is a necessary
but not sufficient condition for rejecting a chance hypothesis . Events which have a
high probability under a given chance hypothesis do not give a reason to reject that
hypothesis .

Specification is defined as conforming to an independently given pattern. The
requirement for the pattern to be independent of the object being investigated is
fundamental. Given absolute freedom of pattern selection, any object can be made
to seem specified by selecting that object as the pattern. It is not impressive to hit a
bullseye if the bullseye is painted on after the arrow has hit the wall. It is impressive
to hit the bullseye if the bullseye was painted before the arrow was fired .

Investigators are often not able to choose the target prior to investigat ing the
object . For example, life is a self-replicating process, and it would seem that an
appropriate specification would be self-replication. Self-replication is what makes life
such a fascinating area of investigation as compared to rocks. Human beings know
about self-replication because of their knowledge of life, not as an independent fact.
Therefore, it does not qualify as an independent specification.

The same is true of almost any specification in biology. It is tempting to
consider flight a specification, but the pattern of flight would only be defined because
flying animals have been observed. As with life in general , specific features in biology
cannot be specified independently of the objects themselves.

The concept of specification has been criticized for being imprecisely defined
and unquantifiable. It has also been charged that maintaining the independence

134 Algorithmic Specified Complexity

of the patterns is difficult . But specification has been defined in a mathematically
rigorous manner in several different ways (Dembski, 1998, 2002, 2005) . Kolmogorov
complexity, or a similar concept , is a persistent method used in these definitions.
The goal of this paper is to present and defend a simple measure of specification
that clearly alleviates these concerns. Towards this end, the authors propose to
use conditional K olmogorov complexity to quantify the degree of specification in an
object. Conditional Kolmogorov complexity can then be combined with complexity
as a measurement of specified complexity. This approach to measuring specified
complexity is called algorithmic specified complexity.

As noted, Kolmogorov complexity has been suggested as a method for measur­
ing specification. The novelty in the method presented here is the use of conditional
Kolmogorov complexity. However, this paper also elucidates a number of examples of
algorithmic compressibility demonstrating wider applicability than is often realized.

2 Method

2.1 Kolmogorov

Kolmogorov complexity is a method of measuring information. It is defined as the
minimum length computer program, in bits, required to produce a binary string.

K(X) = min IPI
U(p,)=XIpEP

(7.1)

where

• K (X) is the Kolmogorov complexity of X

• P is the set of all possible computer programs

• U(p ,) is the output of program p run without input

The definition is given for producing binary strings.
Kolmogorov complexity measures the degree to which a given bitstring follows

a pattern. The more a bitstring follows a pattern, the shorter the program required
to reproduce it . In contrast , if a bitstring exhibits no patterns, it is simply random,
and a much longer program will be required to produce it .

Consider the example of a random binary string, 100100000010100000001010.
It can be produced by the following Python program:

print '100100000010100000001010 '

Figure 7.2: A Python program to produce an unpatterned
bitstring

Method

In contrast, the string 000000000000000000000000 can be produced by

print ' 0' * 24

Figure 7.3: A Python program to produce a patterned bit­
string

135

Both strings are of the same length, but the string following a pattern requires
a shorter program to produce; thus, a technique exists for measuring the degree to
which a binary string follows a pattern.

Specification is defined as following an independently given pattern. Kol­
mogorov complexity provides the ability to precisely define and quantify the degree
to which a binary string follows a pattern. T herefore, it seems plausible that a spec­
ification can be measured using Kolmogorov complexity. The more compressible a
bitstring, the more specified it is.

However, Kolmogorov complexity seems unable to capture the entirety of what
is intended by specification. Natural language text is not reducible to a simple pattern;
however, it is an example of specification. The design of an electronic circuit should
also be specified, but it is not reducible to a simple pattern. In fact , the cases of
specification t hat Kolmogorov complexity seems able to capture are limited to objects
which exhibit some very simple pattern. But these are not the objects of most interest
in terms of specification.

There is also an extension of Kolmogorov complexity known as conditional
Kolmogorov complexity which can be used (Kolmogorov, 1968a). With conditional
Kolmogorov complexity, the program now has access to additional data as its input.

K(X IY) = min IPI
U(p,Y)=XIpEP

(7.2)

where U (p , Y) is the output of running program p with input Y.
In this calculation, the input provides additional data to the program. As a

result, the program is no longer restricted to exploiting patterns in the desired output
but can take advantage of the information provided by the input. Henceforth , this
input is referred to as the context.

The use of context allows the measure to capture a broader range of specifica­
tions. It is possible to describe many bitstrings by combining a short program along
with the contextual information. A useful range of specifications can be captured
using this t echnique.

2.2 Algorithmic Specified Complexity

The following formula for algorithmic specified complexity (ASC) combines the mea­
surement of specification and complexity.

A(X, C,p) = - logp(X) - K (X IC) (7.3)

Examples 137

counter = 0
f or each possible building design

if building won't fall over
counter += 1
i f counter == X

return bui l ding design

Figure 7.4: A pseudocode program which uses a functional
test to compress the specification of an object by its func­
tionality

This program will output the design for a specific building based on a given
value for X . Different values of X will produce different buildings. But any building
that will not fall over can be expressed by t his program. It may take a considerable
amount of space to encode this number. However, if few designs are stable, the
number will take much less space than what would be required to actually specify the
building plans. Thus, the stability of the building plan enables compression, which
in turn indicates specification .

Kolmogorov complexity is not limited to exploiting what humans perceive as
simple patterns. It can also capture other aspects such as functionality. Functionality
can be described as passing a test . As a result , functional objects are compressible.

3 Examples

3.1 Natural Language

Consider the sentence: "The quick brown fox jumps over the lazy dog." T his sentence
can be encoded as UTF-32, a system for encoding that allows the encoding of symbols
from almost any alphabet. Since each character takes 32 bits, the message will be
encoded as a total of 1,376 bits. In this example, the context will be taken to be the
English alphabet along with a space. This is a minimal level of information about
the English language.

To specify one of the 27 characters requires log2 27 bits. To specify the 43
characters in the sentence will thus take 43log2 27 bits. The number of characters
are recorded at 2 log2 43 ~ 10.85 bits.1 Altogether, the specification of the message
requires 43log2 27 + 2log2 43 ~ 215.32 bits.

However, in order to actually give a bound for Kolmogorov complexity, the
length of the computer program which interprets the bits must also be included. Here
is an example computer program in Python which could interpret the message

1 A more compact representation for numbers is available. See the log* method in Cover &
T homas (2006).

138 A lgorithmic Specified Complexity

pri nt ' ' . join(alphabet[index] for i ndex i n encoded_message)

F igure 7.5: An example Python program to interpret the
encoded message

T his assumes that t he alphabet and encoded message are readily available and
in a form amenable to processing within the language. It may be that t he input has
to be preprocessed, which would make t he program longer. Additionally, the length
of t he program will vary heavily depending on which programming language is used.
However, the dist ances between different computers and languages only differ by a
constant (Cover & T homas, 2006). As a result , it is common practice in algorithmic
information t heory t o discount any actual program length and merely include t hat
length as a constant , c. Consequently, the conditional Kolmogorov complexity can
be expressed as

K (X IC) :::; 215.32 bits+ c. (7.4)

T he expression is less than rather than equal to because it is possible that an even
more efficient way of expressing the sentence exists. However, at least this efficiency
is possible.

T he encoded version of the sentence requires 32 bits for each character, giving
a total of 1,376 bits. Using a simplistic probability model, supposing that each bit is
generated by t he equivalent of a coin flip , the complexity, -log P(X), would be 1376
bits. Using equation 7.3,

A(X, C,p) = -log(p) - K(XIC) ~ 1376 bits - 215.32 bits- c = 1160.68 bits - c.

(7.5)
This shows 1,166 bits of algorithmic specified complexity by equation 7.3. Those 1166
bits are a measure of t he confidence in rejecting the hypothesis that the sentence was
generated by random coin flips. The large number of bits gives a good indication that
it is highly unlikely that this sentence was generated by randomly choosing bits.

The hypothesis t hat the sentence was generated by choosing random English
letters can also be analyzed. In this case the probability of this sentence can be
calculated as

P(X) = (2\) 43 (7.6)

The complexity is then

(
1)43

- log P(X) = - log 27 = 43 log 27 ~ 204.46 bits, (7.7)

in which case the algorithmic specified complexity becomes

A (X, C,p) = - logp(X)- K(X IC) ~ 204.46 bits - 215.32 bits- c = - 10.85 bits - c.

(7.8)

Examples 139

The negative bound suggests no reason to suppose that this sentence could not have
been generated by a random choice of English letters. The bound is negative as a
result of two factors . In the specification, 10.85 bit s were required to encode the
length. On the other hand, the probability model assumes a length. Hence, the
negative bits indicate information which t he probability model had , but was not
provided in the context . Since the only provided context is that of English letters ,
this is not a surprising result. No pattern beyond that explained by the probability
model is identified.

T he context can also be expanded. Instead of providing the English alphabet
as the context , the word list of the Oxford English Dictwnary can be used (OED
Online, 201 2). In the second edition of that dictionary there were 615,100 word forms
defined or illustrated. For the purpose of the alphabet context , each letter is encoded
as a number corresponding to that character. In this case, a number corresponding
to words in the dictionary is chosen. Thus the number of bits required to encode the
message using this context can be calculated:

K (X jC) ::::; 9 log2 615, 100 + 2 log2 9 + c;::::; 179.41 + c. (7.9)

Access to the cont ext of the English dictionary allows much better compression than
simply the English alphabet as comparing equations 7.4 and 7.9 shows.

Using equation 7.3 yields

A(X , C, p) = -logp(X) - K (X jC) 2': 204.46 bits - 179.41 bits - c = 25.05 bits- c.
(7.10)

This provides confidence to say this sentence was not generated by randomly choosing
letters from the English alphabet .

It is possible to adopt a probability model that selected random words from
the English language. Such a probability model would explain all of the specification
in the sentence. It is also possible to include more information about the English
language such that the specification would increase.

This technique depends on the fact that the numbers of words in the En­
glish language is much smaller then the number of possible combinations of letters.
If the dictionary contained every possible combination of letters up to some finite
length, it would not allow compression, and thus be of no help to finding evidence of
specification. A language where all possible combinations of lett ers were valid words
could still show specification, but another technique would have to be used to allow
com pressiOn.

But one could also use a much smaller dictionary. A dictionary of 10 words
would be sufficient to include all the words in t his sentence. The ASC formula would
give a much smaller compressed bound:

K (X jC) ::::; 9 log2 10 + 2 log2 9;::::; 36.24 bits. (7.11)

This is a reduction of over 100 bits from equation 7.9. Because the sentence is much
more closely related to the context , it takes about 16 bits less to encode each word

140 Algorithmic Specified Complexity

when the dictionary is this small. In other words , it requires much less additional
information to use the context when it is closely related to the message.

But it is possible to include words not included in the dictionary. The program
would have to fall back on spelling the word one letter at a time. Only the bounds
of the ASC can be computed. It is always possible a better compression exists , i.e.,
the object could be more specified than first realized.

3 .2 Random Noise

While natural language is an example of something that should be specified, random
noise is an example of something which should not . Consider a random bitstring
containing 1,000 bits , where each bit is assigned with equal probability 1 or 0. Since
randomness is incompressible, calculating the Kolmogorov complexity is easy. The
only way of reproducing a random bitstring is to describe the whole bitstring.

K(X) ::; 2log2 1000 + 1000 + c ~ 1020 bits+ c (7.12)

The probability of each bitstring is 2-1000 , and thus the complexity will be 1000 bits .
Calculating the ASC:

A(X, C,p) = -logp(X) - K(XIC):::: 1000 bits-1020 bits-c = - 20 bits-c. (7.13)

As expected, the ASC is negative, and there is therefore no evidence of patterns in
the string that are not explained by the probability model.

However , consider also the case of a biased distribution. That is, 1 and 0 are
not equally likely. Instead, a given bit will be 1 two thirds of the time, while 0 only
one third of the time. The entropy of each bit can be expressed as

1 1 2 2
H(Xi) = - 3log2 3 - 31og2 3 ~ 0.6365 bits (7.14)

for any i . The entropy of a bit is the number of bits required in an optimal encoding
to encode each bit . This means the whole sequence can be described as

K(X) ::; 2 log2 1000 + 1000 * H(Xi) + c ~ 656.5 bits + c. (7.15)

Using the uniform probability model, the complexity is still 1,000 bits and

A(X, C,p) = -logp(X)- K(XIC) :::: 1000 bits- 656.5 bits - c = 343.3 bits- c.
(7.16)

This random sequence has a high bound of algorithmic specified complexity. It is
important to remember that the ASC bound only serves to measure the plausibility
of the random model. It does not exclude the existence of another more accurate
model that explains the data. In this case, using the actual probability model used
to generate the message yields

- log2 (p) = H(Xi) * 1000 ~ 636.5 bits (7.17)

Examples 141

and the resulting ASC:

A(X , C,p) = - logp(X) - K (X IC) 2 636.5 bits- 656.5 bits - c = - 20 bits- c.
(7.18)

The bound of ASC provides reason to reject a uniform noise explanation for this data,
but not the biased coin distribution.

Dembski (Dembski , 1998) has considered the example of ballot rigging where
a political party is almost always given the top billing on the ballot listing candidates.
Since the selection is supposed to be chosen on the basis of a fair coin toss , this is
suspicious. ASC can quantify this situation. T he outcome can be described by giving
the numbers of heads and tails, followed by the same representation as for the biased
coin distribution.

(Xt + X h) K(X)::; 2 logXh + 2 logXt +log Xh + c (7.19)

where Xh is the number of heads, Xt is the number of tails Assuming a probability
model of a fair coin yields

(7.20)

This results in the following:

(7.21)

Figure 7.6 shows the result of plotting this equation for varying numbers of head
and tails given 20 coin tosses. As expected, for either high numbers of tails or high
number of heads , the bound of ASC is high. However , for an instance which looks
like a random sequence, the ASC is minimized.

3.3 Playing Cards

Another pertinent case is that of playing cards in poker. In playing cards, if the dis­
tribution is not uniform, somebody is likely cheating. For the purpose of investigating
card hands, a uniform random distribution over all five-card poker hands is assumed.

In the game of poker, a poker hand is made up of 5 cards. Some cat egories of
hands are rarer then others. Table 7.1 shows the frequency of t he different hands.

Given a uniform distribution, every poker hand has the same probability and
thus the same complexity. There are 2,598,960 possible poker hands. For a single
hand, this yields a complexity of

(7.22)

142 A lgorithmic Specified Complexity

10,------~--~--~------,

-5

-10

- 15.;--o -----;--------;1:-;c-o -----;;15,..--------;20
number ot heads

Figure 7.6: ASC for varyingly biased coin sequences and 20
coin tosses

Name Frequency
Royal Flush 4
Straight Flush 36
Four of a Kind 624
Full House 3,744
Flush 5,108
Straight 10,200
Three of a Kind 54,912
Two Pair 123,552
One Pair 1,098,240
None 1,302,540

Table 7.1: Poker hand frequency

Examples 143

Name Frequency Complexity Compressed Length ASC
Royal Flush 4 21.310 5.322 15.988
Straight Flush 36 21.310 8.492 12.818
Four of a Kind 624 21.310 12.607 8.702
Full House 3,744 21.310 15.192 6.117
Flush 5,108 21.310 15.640 5.669
Straight 10,200 21.310 16.638 4.671
Three of a Kind 54,912 21.310 19.067 2.243
Two pair 123,552 21.310 20.237 1.073
One pair 1,098,240 21.310 21.310 0.000
None 1,302,540 21.310 21.310 0.000

Table 7.2: The ASC of the various poker card hands

While the probability of every poker hand is the same, the Kolmogorov complexity
is not. To describe a royal flush requires specifying t hat it is a royal flush and which
suit it is in. However, describing a pair requires specifying the paired value as well
as both suits in addition to the three cards not involved in the pair. In general,
describing a hand requires specifying the type of hand and which particular hand of
all the possible hands of that type. This can be used to calculate the conditional
Kolmogorov complexity for the hand.

(7.23)

where 10 is the number of types of hands. H is the set of all hands of a particular
type, and Hi is a particular hand in that set .

T here are 1,098,240 possible pairs. Putting this in Equation 7.23 gives:

K (Hi iC) ::::; log2 10 + log2 IHI + c ~ 23.39 bits + c. (7.24)

On the other hand, describing a pair without using the context gives

K (Hi iC) :S log2 2, 598,960 + c ~ 21.3 bits+ c. (7.25)

Single pairs are so common that the space required to record that it was a pair is more
than the space required to record the duplicate card straightforwardly. Accordingly,
the best approach is to t ake the minimum of the two methods

K (Hi iC) ::::; min(log2 10 + log2 IHI, log2 2, 598, 960) +c. (7.26)

Table 7.2 shows the ASC for the various poker hands. Rare hands have high
ASC, but common hands have low ASC. T his parallels expectations, because with a
rare hand one might suspect cheating, but with a common hand one will not.

144 Algorithmic Specified Complexity

In other card games, a card is turned over after hands have been dealt to
determine trump. The suit of the card is taken to trump for that round of the game.
If the same suit is repeatedly chosen as trump , someone may ask what the odds are
for that to occur. This question can be difficult to answer because every possible
sequence of trump suits is equally likely. Yet, it is deemed unusual that the same suit
is a trump repeatedly. Algorithmic specified complexity allows this to be modeled.

The suits are represented as a bit sequence using two bits for each suit ,

K(X) = log2 4 + log2 H + c = 2 + log2 H + c (7.27)

where 4 is the number of suits, and H is the number of hands played. The complexity
of the sequence is

-lXI
-log P(X) = 4-2- = 2H. (7.28)

The ASC is then
ASC(X,p) = 2H- 2 -log2 H - c. (7.29)

Note that this equation becomes -c when H = 1. A pattern repeating once is no
pattern at all and does not provide specification.

30.------------r----------~,-----------~----------~

25

20

10

5

5 10
hands

15

Figure 7.7: A plot of ASC for getting the same suit repeatedly

20

Examples 145

Figure 7.7 shows the ASC for increasing numbers of hands. The more times
the same suit is chosen as trump, the larger the number of bits of ASC. The same
trump for many rounds becomes less and less probable.

3.4 Folding Proteins

In biology, an important prerequisite to a protein being functional is that it folds. The
fraction of all possible protein sequences that fold has been estimated: "the overall
prevalence of sequences performing a specific function by any domain-sized fold may
be as low as 1 in 1077" (Axe, 2004) .

A program can be created which uses the laws of physics to output a particular
foldable protein.

for all proteins of length L
run protein in a phys i cs simulator
if protein folds

add to list of folding proteins
output the Xth protein from the list

Figure 7.8: A pseudocode program which uses a functional
specification to compress the specification of a protein

Given different choices of L and N , this program will output any particular
folding protein. This means that the protein can be described by providing those
two numbers. Thus, the conditional Kolmogorov complexity can be calculated using
these two numbers.

K(X/C) = 2 log2 L + log2 FL + c (7.30)

where Cis the context, in this case the law of physics, and FL is the number of folding
proteins of length L . Taking Axe's estimate (Axe, 2004) , and assuming simplistically
that it applies for all lengths of proteins,

log FL = -77log 10 + L log 4

therefore

K (X /C) = 2 log2 L + log2 FL + c = 2 log2 L + -77log 10 + L log 4.

(7.31)

(7.32)

(7.33)

The probability model will be chosen by supposing that each base along the
DNA chain for the gene encoding the protein is uniformly chosen. It should be
emphasized that according to the Darwinian model of evolution, the bases are not

146 A lgorithmic Specifi ed Complexity

uniformly chosen. This supposition only serves to test a simplistic chance model of
protein origin. The probability can be calculated as

(7.34)

Caution should be used in applying this formula. It assumes that the proportion of
functional proteins is applicable for all lengths and implies that a fractional number
of proteins fold .

Finally calculating the ASC,

AS C (X , p) = L log 4 - 2 log2 L + 77 log2 10 - L log2 4 - c

= - 2 log2 L + 77 log2 10 - c. (7.35)

T he final bound for ASC depends lit tle on the length of t he protein sequence which
only comes to play in the logarithmic term. The significant term is the 77 log2 10 ~
255.79 bits. T hus, there is good reason t o believe that folding sequences were not
generated randomly from a uniform distribution .

3.5 Functional Sequence Complexity

Kirk Durston et al. have defined the idea of fun ctional sequen ce complexity (Durston,
Chiu, Abel, & Trevors, 2007). Functional sequence complexity is related to a special
case of algorithmic specified complexity.

A protein is made from a sequence of amino acids . Some sequences have
functionality, and some do not . T he case considered in section 3.4 above of folding
is one particular case. Perhaps more interesting is considering t he case of various
proteins which perform useful biological functions.

Let D be the set of all proteins. Let F be the set of all proteins which pass a
functionality t est . Let f(x) be a probability distribution over F. Both F and f(x)
can be produced by a simple algorithm using a functionality test on each element of
D. Consequently, F and f(x) can be described using a constant program length.

Consider the average for ASC over all elements in F .

L f (x)A(x , C,p) = L f(x)(- logp(x) - K (x iC))
xEF xEF

= L -f(x) log p(x)- L f (x)K (x iC)) (7.36)
xEF xEF

Any element x can be described given t he probability distribut ion and
log f(x) bits. Given that f(x) and F can be calculat ed with a const ant program,
the conditional Kolmogorov complexity can be calculat ed as

K (x iC) :::; log - f(x) + c. (7.37)

Objections 147

Place this into equation 7.36.

L f(x)A(x , C,p) 2 L - f(x) logp(x)- L - f(x) log f(x) - L c (7.38)
xEF xEF xEF xEF

The middle term is recognized as the Shannon entropy.

L f(x)A(x , C,p) 2 L - f(x) logp(x)- H (f)- c L f(x) (7.39)
xEF xEF xEF

If the distribution p is uniform, p(x) = 1A1 ,

L f(x)A(x , C,p) 2 log2 IOI L f(x)- H(f) - c L f(x) . (7.40)
xEF xEF xEF

The two summations over F are summations over a probability distribution and there­
fore 1.

L f (x)A (x , C,p) 2 log2 IOI- H (f) - c (7.41)
xEF

Equation 5 in Durston 's work, adjusting for notation is

log 101 - H(f). (7.42)

T his equation derives from making the same uniformity assumption made above.
Thus, for the uniform probability distribution case,

L (f(x)A(x , C,p)) + c 2 log 101- H(f) . (7.43)
xEF

This establishes the relationship between ASC and FSC. The difference is that the
ASC is a lower bound and includes a const ant . This is the same constant as elsewhere:
the length of the program required to describe the specification.

4 Objections

4 .1 Natural Law

It has been argued in this paper that compressibility in the presence of context is a
necessary condition for information. This is in contrast to others who have argued
that lack of compressibility is a necessary condition for information (Abel & Trevors ,
2005) . But compressible objects lack complexity. Because a compressible object is
describable as some simple pattern, it is amenable to being produced by a simple
process. Many objects in the real world follow simple patterns. Water tends to
collect at lower elevations. Beaches follow a sloping pattern. Sparks fly upwards. But

148 A lgorithmic Specified Complexity

these patterns are the result of the operation of simple law-like processes. Even if t he
explanations for these patterns were unknown , the simplicity of the pattern suggests
that some simple explanation exist ed .

The premise behind this use of compressibility is that it identifies what human
would see as simple patterns. Abel writes: "A sequence is compressible because it
contains redundant order and patterns" (Abel & Trevors, 2005).

The problem is that algorithms are very versatile and allow t he description
of many patterns beyond that which humans would see as patterns. As has been
shown by the various examples in this paper, many objects which do not exhibit
what humans typically identify as redundant order and patterns are in fact compress­
ible. Significant ly, funct ionality actually allows compressibility. Contrary to what
Abel st ates, functional sequences are compressible by virtue of the functionality they
exhibit. All of the sequences that Abel holds to be mostly incompressible are actually
compressible.

But are compressible object s amenable to explanation by simple processes?
Do all compressible objects lack complexity? If this were t rue, it would be problem­
atic for algorithmic specified complexity because all specified object s would also not
be complex, and no object would ever be both specified and complex. But many
compressible objects do not appear amenable to explanation by a simple process.

As discussed, English text is compressible given a knowledge of t he English
language. This does not somehow make it probable that English text will appear on
a beach carved out by waves. Ninety degree angles are very compressible; yet , they
are not typically found in nature. The existence of an explanation from the laws of
nature does not appear to follow from compressibility.

Kolmogorov complexity deliberately ignores how long a program takes to run.
It is only concerned with the length of the program's description. A program may
be short but take an astronomical amount of time to run. Many of the specifications
considered in this paper fall into that category. These object s are compressible, but
that compression does not give a practical way t o reproduce the object. But if there
is no practical way to reproduce the object, there is no reason to suggest law-like
processes as a plausible explanation.

4.2 Context is Subject ive

The ASC of any object will depend on the context chosen. Any object can be made
to have high ASC by using a specifically chosen context . But this appears to be the
way t hat information works. If t he authors, who do not understand Arabic, look
at Arabic text, it appears to be no better then scribbling. The problem is not t hat
Arabic lacks information content , but that the reader is unable t o ident ify it without
t he necessary context . As a result, this subjectivity appears to capture something
about the way information works in the human experience.

As with specification, it is important that the context be chosen that is in-

Acknowledgements 149

dependent of the object under investigation. While a specification will rarely be
independent of the object under investigation, it is much easier t o maintain this in­
dependence in the case of a context .

4.3 Incalculability

It is not possible to calculate the Kolmogorov complexity of an object . However,
it is possible to upper-bound the Kolmogorov complexity and thus lower-bound the
algorithmic specified complexity. This means that something can be determined to be
at least this specified, although the possibility that it is even more specified cannot
be ruled out . T herefore , even though detecting a specification cannot be achieved
mechanically, it can be objectively identified when found.

Acknowledgements

The approach of using compressibility as a measurement of specification was suggested
to the authors by Eric Holloway. The authors have attempted to extend the approach
to apply to many more types of specifications. T he authors are grateful for his initial
suggestion and answer to our initial objections to the idea.

Winston Ewert

Winston Ewert hails from Canada where he earned a Bach­
elor 's degree in Computer Science from Trinity Western Uni­
versity. He continued his graduate career at Baylor University
where he earned a master 's degree and is currently a Ph.D.
candidate. At Baylor he is currently working for the Evolu­
tionary Informatics Lab, with Robert J. Marks II and William
Dembski, dedicated to understanding the role of information
in evolution. He has a number of publications in the areas
of search, conservation of informat ion, artificial life, swarm
intelligence, and evolutionary modelling.

Robert J. Marks II

Robert J . Marks II is currently the Distinguished Professor
of Electrical and Computer Engineering at Baylor University,
Waco, TX. He is a Fellow of both IEEE and the Optical Soci­
ety of America. He served for 17 years as the Faculty Advisor
with the Campus Crusade for Christ, University of Washing­
ton chapter. His consulting activities include Microsoft Corpo­
ration, Pacific Gas & Electric, and Boeing Computer Services.

Eleven of his papers have been republished in collections of seminal works. He is
the author of Introduction to Shannon Sampling and Interpolation Theory (Springer­
Verlag) , Handbook of Fourier Analysis and Its Applications (Oxford University Press)
and is a co-author of Neural Smithing (MIT Press). His research has been funded
by organizations such as the National Science Foundation, General Electric, Southern
California Edison, Electric Power Research Institute, the Air Force Office of Scientific
Research, the Office of Naval Research, the Whitaker Foundation, Boeing Defense,
the National Institutes of Health, The Jet Propulsion Laboratory, the Army Research
Office, and the National Aeronautics and Space Administration (NASA) . His Erdos­
Bacon number is five .

	100
	131
	132
	133
	134
	135
	136
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	224
	225
	233

