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Engineers like to think that they produce something different from that of a chaotic 
system. The Eiffel tower is fundamentally different from the same components lying 
in a heap on the ground. Mt . Rushmore is fundamentally different from a random 
mountainside. But engineers lack a good method for quantifying this idea. This 
has led some to reject the idea that engineered or designed systems can be detected. 
Various methods have been proposed, each of which has various faults . Some have 
trouble distinguishing noise from data, some are subjective, etc. For this study, con­
ditional Kolmogorov complexity is used to measure the degree of specification of an 
object. The Kolmogorov complexity of an object is the length of the shortest com­
puter program required to describe that object. Conditional Kolmogorov complexity 
is Kolmogorov complexity with access to a context. The program can extract in­
formation from the context in a variety of ways allowing more compression . The 
more compressible an object is , the greater the evidence that the object is speci­
fied . Random noise is incompressible , and so compression indicates that the object 
is not simply random noise . This model is intended to launch further dialog on use 
of conditional Kolmogorov complexity in the measurement of specified complexity. 

1 Introduction 

Intuitively, humans identify objects such as the carved faces at Mount Rushmore as 
qualitatively different from that of a random mountainside. However , quantifying this 
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Figure 7.1: T he faces of Mount Rushmore- Public Domain 

concept in an objective manner has proved difficult . Both mountainsides are made 
up of the same material components. They are both subject to the same physical 
forces and will react the same to almost all physical tests. Yet, there does appear to 
be something quite different about Mount Rushmore. There is a special something 
about carved faces that separat es it from the rock it is carved in. 

This "special something" is information. Information is what distinguishes 
an empty hard disk from a full one. Information is the difference between random 
scribbling and carefully printed prose. Information is the difference between car parts 
strewn over a lawn and a working truck. 

While humans operate using an intuitive concept of information, attempts to 
develop a theory of information have thus far fallen short of the intuitive concept. 
Claude Shannon developed what its today known as Shannon information theory 
(Shannon et al. , 1950) . Shannon's concern was studying the problem of communi­
cation, that of sending information from one point to another. However, Shannon 
explicitly avoided t he question of the meaningfulness of the information being trans­
mitted, thus not quite capturing the concept of information as defined in this paper. 
In fact , under Shannon's model a random signal has the highest amount of informa­
tion, the precise opposite of the intuitive concept . 

Another model of information is that of algorithmic information theory 
(Chaitin, 1966; Solomonoff, 1960; Kolmogorov, 1968b). Techniques such as Kol­
mogorov complexity measure the complexity of an object as the minimum length 
computer program required to recreate the object; Chaitin refers to such minimum 
length programs as elegant (Chaitin, 2002). As with Shannon information, random 
noise is the most complex because it requires a long computer program to describe. 
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In contrast , simple patterns are not complex because a short computer program can 
describe the pattern. But neither simple patterns nor random noise are considered 
conceptual information. As with Shannon information, there is a disconnect between 
Kolmogorov complexity and conceptual information. 

Other models are based on algorithmic information theory, but also take into 
account the computational resources required for the programs being run. Levin 
complexity adds the log of the execution time to the complexity of the problem 
(Levin, 1976) . Logical depth, on the other hand, is concerned with the execution 
time of the shortest program (Bennett , 1988) . There is a class of objects which are 
easy to describe but expensive to actually produce. It is argued (Bennett , 1988) that 
objects in this class must have been produced over a long history. Such objects are 
interesting, but do not seem to capture the intuitive concept of information in its 
ent irety. English text or Mount Rushmore correspond to what is usually considered 
as information, but it is not clear that they can be most efficiently described as long 
runnmg programs. 

One approach to information is specified complexity as expressed by Dembski 
(Dembski , 1998) . Dembski 's concern is that of detecting design, the separation of 
that which can be explained by chance or necessity from that which is the product of 
intelligence. In order to infer design, an object must be both complex and specified. 
Complexity refers, essentially, to improbability. The probability of any given object 
depends on the chance hypothesis proposed to explain it . Improbability is a necessary 
but not sufficient condition for rejecting a chance hypothesis . Events which have a 
high probability under a given chance hypothesis do not give a reason to reject that 
hypothesis . 

Specification is defined as conforming to an independently given pattern. The 
requirement for the pattern to be independent of the object being investigated is 
fundamental. Given absolute freedom of pattern selection, any object can be made 
to seem specified by selecting that object as the pattern. It is not impressive to hit a 
bullseye if the bullseye is painted on after the arrow has hit the wall. It is impressive 
to hit the bullseye if the bullseye was painted before the arrow was fired . 

Investigators are often not able to choose the target prior to investigat ing the 
object . For example, life is a self-replicating process, and it would seem that an 
appropriate specification would be self-replication. Self-replication is what makes life 
such a fascinating area of investigation as compared to rocks. Human beings know 
about self-replication because of their knowledge of life, not as an independent fact. 
Therefore, it does not qualify as an independent specification. 

The same is true of almost any specification in biology. It is tempting to 
consider flight a specification, but the pattern of flight would only be defined because 
flying animals have been observed. As with life in general , specific features in biology 
cannot be specified independently of the objects themselves. 

The concept of specification has been criticized for being imprecisely defined 
and unquantifiable. It has also been charged that maintaining the independence 
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of the patterns is difficult . But specification has been defined in a mathematically 
rigorous manner in several different ways (Dembski, 1998, 2002, 2005) . Kolmogorov 
complexity, or a similar concept , is a persistent method used in these definitions. 
The goal of this paper is to present and defend a simple measure of specification 
that clearly alleviates these concerns. Towards this end, the authors propose to 
use conditional K olmogorov complexity to quantify the degree of specification in an 
object. Conditional Kolmogorov complexity can then be combined with complexity 
as a measurement of specified complexity. This approach to measuring specified 
complexity is called algorithmic specified complexity. 

As noted, Kolmogorov complexity has been suggested as a method for measur­
ing specification. The novelty in the method presented here is the use of conditional 
Kolmogorov complexity. However, this paper also elucidates a number of examples of 
algorithmic compressibility demonstrating wider applicability than is often realized. 

2 Method 

2.1 Kolmogorov 

Kolmogorov complexity is a method of measuring information. It is defined as the 
minimum length computer program, in bits, required to produce a binary string. 

K(X) = min IPI 
U(p,)=XIpEP 

(7.1) 

where 

• K (X ) is the Kolmogorov complexity of X 

• P is the set of all possible computer programs 

• U(p , ) is the output of program p run without input 

The definition is given for producing binary strings. 
Kolmogorov complexity measures the degree to which a given bitstring follows 

a pattern. The more a bitstring follows a pattern, the shorter the program required 
to reproduce it . In contrast , if a bitstring exhibits no patterns, it is simply random, 
and a much longer program will be required to produce it . 

Consider the example of a random binary string, 100100000010100000001010. 
It can be produced by the following Python program: 

print '100100000010100000001010 ' 

Figure 7.2: A Python program to produce an unpatterned 
bitstring 
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In contrast, the string 000000000000000000000000 can be produced by 

print ' 0' * 24 

Figure 7.3: A Python program to produce a patterned bit­
string 
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Both strings are of the same length, but the string following a pattern requires 
a shorter program to produce; thus, a technique exists for measuring the degree to 
which a binary string follows a pattern. 

Specification is defined as following an independently given pattern. Kol­
mogorov complexity provides the ability to precisely define and quantify the degree 
to which a binary string follows a pattern. T herefore, it seems plausible that a spec­
ification can be measured using Kolmogorov complexity. The more compressible a 
bitstring, the more specified it is. 

However, Kolmogorov complexity seems unable to capture the entirety of what 
is intended by specification. Natural language text is not reducible to a simple pattern; 
however, it is an example of specification. The design of an electronic circuit should 
also be specified, but it is not reducible to a simple pattern. In fact , the cases of 
specification t hat Kolmogorov complexity seems able to capture are limited to objects 
which exhibit some very simple pattern. But these are not the objects of most interest 
in terms of specification. 

There is also an extension of Kolmogorov complexity known as conditional 
Kolmogorov complexity which can be used (Kolmogorov, 1968a). With conditional 
Kolmogorov complexity, the program now has access to additional data as its input. 

K(X IY ) = min IPI 
U(p,Y)=XIpEP 

(7.2) 

where U (p , Y) is the output of running program p with input Y. 
In this calculation, the input provides additional data to the program. As a 

result, the program is no longer restricted to exploiting patterns in the desired output 
but can take advantage of the information provided by the input. Henceforth , this 
input is referred to as the context. 

The use of context allows the measure to capture a broader range of specifica­
tions. It is possible to describe many bitstrings by combining a short program along 
with the contextual information. A useful range of specifications can be captured 
using this t echnique. 

2.2 Algorithmic Specified Complexity 

The following formula for algorithmic specified complexity (ASC) combines the mea­
surement of specification and complexity. 

A(X, C,p) = - logp(X) - K (X IC) (7.3) 
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counter = 0 
f or each possible building design 

if building won't fall over 
counter += 1 
i f counter == X 

return bui l ding design 

Figure 7.4: A pseudocode program which uses a functional 
test to compress the specification of an object by its func­
tionality 

This program will output the design for a specific building based on a given 
value for X . Different values of X will produce different buildings. But any building 
that will not fall over can be expressed by t his program. It may take a considerable 
amount of space to encode this number. However, if few designs are stable, the 
number will take much less space than what would be required to actually specify the 
building plans. Thus, the stability of the building plan enables compression, which 
in turn indicates specification . 

Kolmogorov complexity is not limited to exploiting what humans perceive as 
simple patterns. It can also capture other aspects such as functionality. Functionality 
can be described as passing a test . As a result , functional objects are compressible. 

3 Examples 

3.1 Natural Language 

Consider the sentence: "The quick brown fox jumps over the lazy dog." T his sentence 
can be encoded as UTF-32, a system for encoding that allows the encoding of symbols 
from almost any alphabet. Since each character takes 32 bits, the message will be 
encoded as a total of 1,376 bits. In this example, the context will be taken to be the 
English alphabet along with a space. This is a minimal level of information about 
the English language. 

To specify one of the 27 characters requires log2 27 bits. To specify the 43 
characters in the sentence will thus take 43log2 27 bits. The number of characters 
are recorded at 2 log2 43 ~ 10.85 bits.1 Altogether, the specification of the message 
requires 43log2 27 + 2log2 43 ~ 215.32 bits. 

However, in order to actually give a bound for Kolmogorov complexity, the 
length of the computer program which interprets the bits must also be included. Here 
is an example computer program in Python which could interpret the message 

1 A more compact representation for numbers is available. See the log* method in Cover & 
T homas (2006). 
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pri nt ' ' . join(alphabet[index] for i ndex i n encoded_message) 

F igure 7.5: An example Python program to interpret the 
encoded message 

T his assumes that t he alphabet and encoded message are readily available and 
in a form amenable to processing within the language. It may be that t he input has 
to be preprocessed, which would make t he program longer. Additionally, the length 
of t he program will vary heavily depending on which programming language is used. 
However, the dist ances between different computers and languages only differ by a 
constant (Cover & T homas, 2006). As a result , it is common practice in algorithmic 
information t heory t o discount any actual program length and merely include t hat 
length as a constant , c. Consequently, the conditional Kolmogorov complexity can 
be expressed as 

K (X IC) :::; 215.32 bits+ c. (7.4) 

T he expression is less than rather than equal to because it is possible that an even 
more efficient way of expressing the sentence exists. However, at least this efficiency 
is possible. 

T he encoded version of the sentence requires 32 bits for each character, giving 
a total of 1,376 bits. Using a simplistic probability model, supposing that each bit is 
generated by t he equivalent of a coin flip , the complexity, -log P(X), would be 1376 
bits. Using equation 7.3, 

A(X, C,p) = -log(p) - K(XIC) ~ 1376 bits - 215.32 bits- c = 1160.68 bits - c. 

(7.5) 
This shows 1,166 bits of algorithmic specified complexity by equation 7.3. Those 1166 
bits are a measure of t he confidence in rejecting the hypothesis that the sentence was 
generated by random coin flips. The large number of bits gives a good indication that 
it is highly unlikely that this sentence was generated by randomly choosing bits. 

The hypothesis t hat the sentence was generated by choosing random English 
letters can also be analyzed. In this case the probability of this sentence can be 
calculated as 

P(X ) = (2\) 43 (7.6) 

The complexity is then 

( 
1 )43 

- log P(X) = - log 27 = 43 log 27 ~ 204.46 bits, (7.7) 

in which case the algorithmic specified complexity becomes 

A (X, C,p) = - logp(X)- K(X IC) ~ 204.46 bits - 215.32 bits- c = - 10.85 bits - c. 

(7.8) 
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The negative bound suggests no reason to suppose that this sentence could not have 
been generated by a random choice of English letters. The bound is negative as a 
result of two factors . In the specification, 10.85 bit s were required to encode the 
length. On the other hand, the probability model assumes a length. Hence, the 
negative bits indicate information which t he probability model had , but was not 
provided in the context . Since the only provided context is that of English letters , 
this is not a surprising result. No pattern beyond that explained by the probability 
model is identified. 

T he context can also be expanded. Instead of providing the English alphabet 
as the context , the word list of the Oxford English Dictwnary can be used (OED 
Online, 201 2). In the second edition of that dictionary there were 615,100 word forms 
defined or illustrated. For the purpose of the alphabet context , each letter is encoded 
as a number corresponding to that character. In this case, a number corresponding 
to words in the dictionary is chosen. Thus the number of bits required to encode the 
message using this context can be calculated: 

K (X jC) ::::; 9 log2 615, 100 + 2 log2 9 + c;::::; 179.41 + c. (7.9) 

Access to the cont ext of the English dictionary allows much better compression than 
simply the English alphabet as comparing equations 7.4 and 7.9 shows. 

Using equation 7.3 yields 

A(X , C, p) = -logp(X ) - K (X jC ) 2': 204.46 bits - 179.41 bits - c = 25.05 bits- c. 
(7.10) 

This provides confidence to say this sentence was not generated by randomly choosing 
letters from the English alphabet . 

It is possible to adopt a probability model that selected random words from 
the English language. Such a probability model would explain all of the specification 
in the sentence. It is also possible to include more information about the English 
language such that the specification would increase. 

This technique depends on the fact that the numbers of words in the En­
glish language is much smaller then the number of possible combinations of letters. 
If the dictionary contained every possible combination of letters up to some finite 
length, it would not allow compression, and thus be of no help to finding evidence of 
specification. A language where all possible combinations of lett ers were valid words 
could still show specification, but another technique would have to be used to allow 
com pressiOn. 

But one could also use a much smaller dictionary. A dictionary of 10 words 
would be sufficient to include all the words in t his sentence. The ASC formula would 
give a much smaller compressed bound: 

K (X jC) ::::; 9 log2 10 + 2 log2 9;::::; 36.24 bits. (7.11) 

This is a reduction of over 100 bits from equation 7.9. Because the sentence is much 
more closely related to the context , it takes about 16 bits less to encode each word 
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when the dictionary is this small. In other words , it requires much less additional 
information to use the context when it is closely related to the message. 

But it is possible to include words not included in the dictionary. The program 
would have to fall back on spelling the word one letter at a time. Only the bounds 
of the ASC can be computed. It is always possible a better compression exists , i.e., 
the object could be more specified than first realized. 

3 .2 Random Noise 

While natural language is an example of something that should be specified, random 
noise is an example of something which should not . Consider a random bitstring 
containing 1,000 bits , where each bit is assigned with equal probability 1 or 0. Since 
randomness is incompressible, calculating the Kolmogorov complexity is easy. The 
only way of reproducing a random bitstring is to describe the whole bitstring. 

K(X) ::; 2log2 1000 + 1000 + c ~ 1020 bits+ c (7.12) 

The probability of each bitstring is 2-1000 , and thus the complexity will be 1000 bits . 
Calculating the ASC: 

A(X, C,p) = -logp(X) - K(XIC):::: 1000 bits-1020 bits-c = - 20 bits-c. (7.13) 

As expected, the ASC is negative, and there is therefore no evidence of patterns in 
the string that are not explained by the probability model. 

However , consider also the case of a biased distribution. That is, 1 and 0 are 
not equally likely. Instead, a given bit will be 1 two thirds of the time, while 0 only 
one third of the time. The entropy of each bit can be expressed as 

1 1 2 2 
H(Xi) = - 3log2 3 - 31og2 3 ~ 0.6365 bits (7.14) 

for any i . The entropy of a bit is the number of bits required in an optimal encoding 
to encode each bit . This means the whole sequence can be described as 

K(X) ::; 2 log2 1000 + 1000 * H(Xi) + c ~ 656.5 bits + c. (7.15) 

Using the uniform probability model, the complexity is still 1,000 bits and 

A(X, C,p) = -logp(X)- K(XIC) :::: 1000 bits- 656.5 bits - c = 343.3 bits- c. 
(7.16) 

This random sequence has a high bound of algorithmic specified complexity. It is 
important to remember that the ASC bound only serves to measure the plausibility 
of the random model. It does not exclude the existence of another more accurate 
model that explains the data. In this case, using the actual probability model used 
to generate the message yields 

- log2 (p) = H(Xi) * 1000 ~ 636.5 bits (7.17) 
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and the resulting ASC: 

A(X , C,p) = - logp(X) - K (X IC ) 2 636.5 bits- 656.5 bits - c = - 20 bits- c. 
(7.18) 

The bound of ASC provides reason to reject a uniform noise explanation for this data, 
but not the biased coin distribution. 

Dembski (Dembski , 1998) has considered the example of ballot rigging where 
a political party is almost always given the top billing on the ballot listing candidates. 
Since the selection is supposed to be chosen on the basis of a fair coin toss , this is 
suspicious. ASC can quantify this situation. T he outcome can be described by giving 
the numbers of heads and tails, followed by the same representation as for the biased 
coin distribution. 

( Xt + X h) K(X)::; 2 logXh + 2 logXt +log Xh + c (7.19) 

where Xh is the number of heads, Xt is the number of tails Assuming a probability 
model of a fair coin yields 

(7.20) 

This results in the following: 

(7.21) 

Figure 7.6 shows the result of plotting this equation for varying numbers of head 
and tails given 20 coin tosses. As expected, for either high numbers of tails or high 
number of heads , the bound of ASC is high. However , for an instance which looks 
like a random sequence, the ASC is minimized. 

3.3 Playing Cards 

Another pertinent case is that of playing cards in poker. In playing cards, if the dis­
tribution is not uniform, somebody is likely cheating. For the purpose of investigating 
card hands, a uniform random distribution over all five-card poker hands is assumed. 

In the game of poker, a poker hand is made up of 5 cards. Some cat egories of 
hands are rarer then others. Table 7.1 shows the frequency of t he different hands. 

Given a uniform distribution, every poker hand has the same probability and 
thus the same complexity. There are 2,598,960 possible poker hands. For a single 
hand, this yields a complexity of 

(7.22) 
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10,------~--~--~------, 
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number ot heads 

Figure 7.6: ASC for varyingly biased coin sequences and 20 
coin tosses 

Name Frequency 
Royal Flush 4 
Straight Flush 36 
Four of a Kind 624 
Full House 3,744 
Flush 5,108 
Straight 10,200 
Three of a Kind 54,912 
Two Pair 123,552 
One Pair 1,098,240 
None 1,302,540 

Table 7.1: Poker hand frequency 
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Name Frequency Complexity Compressed Length ASC 
Royal Flush 4 21.310 5.322 15.988 
Straight Flush 36 21.310 8.492 12.818 
Four of a Kind 624 21.310 12.607 8.702 
Full House 3,744 21.310 15.192 6.117 
Flush 5,108 21.310 15.640 5.669 
Straight 10,200 21.310 16.638 4.671 
Three of a Kind 54,912 21.310 19.067 2.243 
Two pair 123,552 21.310 20.237 1.073 
One pair 1,098,240 21.310 21.310 0.000 
None 1,302,540 21.310 21.310 0.000 

Table 7.2: The ASC of the various poker card hands 

While the probability of every poker hand is the same, the Kolmogorov complexity 
is not. To describe a royal flush requires specifying t hat it is a royal flush and which 
suit it is in. However, describing a pair requires specifying the paired value as well 
as both suits in addition to the three cards not involved in the pair. In general, 
describing a hand requires specifying the type of hand and which particular hand of 
all the possible hands of that type. This can be used to calculate the conditional 
Kolmogorov complexity for the hand. 

(7.23) 

where 10 is the number of types of hands. H is the set of all hands of a particular 
type, and Hi is a particular hand in that set . 

T here are 1,098,240 possible pairs. Putting this in Equation 7.23 gives: 

K (Hi iC) ::::; log2 10 + log2 IHI + c ~ 23.39 bits + c. (7.24) 

On the other hand, describing a pair without using the context gives 

K (Hi iC) :S log2 2, 598,960 + c ~ 21.3 bits+ c. (7.25) 

Single pairs are so common that the space required to record that it was a pair is more 
than the space required to record the duplicate card straightforwardly. Accordingly, 
the best approach is to t ake the minimum of the two methods 

K (Hi iC) ::::; min(log2 10 + log2 IHI, log2 2, 598, 960) +c. (7.26) 

Table 7.2 shows the ASC for the various poker hands. Rare hands have high 
ASC, but common hands have low ASC. T his parallels expectations, because with a 
rare hand one might suspect cheating, but with a common hand one will not. 
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In other card games, a card is turned over after hands have been dealt to 
determine trump. The suit of the card is taken to trump for that round of the game. 
If the same suit is repeatedly chosen as trump , someone may ask what the odds are 
for that to occur. This question can be difficult to answer because every possible 
sequence of trump suits is equally likely. Yet, it is deemed unusual that the same suit 
is a trump repeatedly. Algorithmic specified complexity allows this to be modeled. 

The suits are represented as a bit sequence using two bits for each suit , 

K(X) = log2 4 + log2 H + c = 2 + log2 H + c (7.27) 

where 4 is the number of suits, and H is the number of hands played. The complexity 
of the sequence is 

-lXI 
-log P(X) = 4-2- = 2H. (7.28) 

The ASC is then 
ASC(X,p) = 2H- 2 -log2 H - c. (7.29) 

Note that this equation becomes -c when H = 1. A pattern repeating once is no 
pattern at all and does not provide specification. 

30.------------r----------~,-----------~----------~ 
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5 10 
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Figure 7.7: A plot of ASC for getting the same suit repeatedly 
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Figure 7.7 shows the ASC for increasing numbers of hands. The more times 
the same suit is chosen as trump, the larger the number of bits of ASC. The same 
trump for many rounds becomes less and less probable. 

3.4 Folding Proteins 

In biology, an important prerequisite to a protein being functional is that it folds. The 
fraction of all possible protein sequences that fold has been estimated: "the overall 
prevalence of sequences performing a specific function by any domain-sized fold may 
be as low as 1 in 1077" (Axe, 2004) . 

A program can be created which uses the laws of physics to output a particular 
foldable protein. 

for all proteins of length L 
run protein in a phys i cs simulator 
if protein folds 

add to list of folding proteins 
output the Xth protein from the list 

Figure 7.8: A pseudocode program which uses a functional 
specification to compress the specification of a protein 

Given different choices of L and N , this program will output any particular 
folding protein. This means that the protein can be described by providing those 
two numbers. Thus, the conditional Kolmogorov complexity can be calculated using 
these two numbers. 

K(X/C) = 2 log2 L + log2 FL + c (7.30) 

where Cis the context, in this case the law of physics, and FL is the number of folding 
proteins of length L . Taking Axe's estimate (Axe, 2004) , and assuming simplistically 
that it applies for all lengths of proteins, 

log FL = -77log 10 + L log 4 

therefore 

K (X /C ) = 2 log2 L + log2 FL + c = 2 log2 L + -77log 10 + L log 4. 

(7.31) 

(7.32) 

(7.33) 

The probability model will be chosen by supposing that each base along the 
DNA chain for the gene encoding the protein is uniformly chosen. It should be 
emphasized that according to the Darwinian model of evolution, the bases are not 
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uniformly chosen. This supposition only serves to test a simplistic chance model of 
protein origin. The probability can be calculated as 

(7.34) 

Caution should be used in applying this formula. It assumes that the proportion of 
functional proteins is applicable for all lengths and implies that a fractional number 
of proteins fold . 

Finally calculating the ASC, 

AS C (X , p) = L log 4 - 2 log2 L + 77 log2 10 - L log2 4 - c 

= - 2 log2 L + 77 log2 10 - c. (7.35) 

T he final bound for ASC depends lit tle on the length of t he protein sequence which 
only comes to play in the logarithmic term. The significant term is the 77 log2 10 ~ 
255.79 bits. T hus, there is good reason t o believe that folding sequences were not 
generated randomly from a uniform distribution . 

3.5 Functional Sequence Complexity 

Kirk Durston et al. have defined the idea of fun ctional sequen ce complexity (Durston, 
Chiu, Abel, & Trevors, 2007). Functional sequence complexity is related to a special 
case of algorithmic specified complexity. 

A protein is made from a sequence of amino acids . Some sequences have 
functionality, and some do not . T he case considered in section 3.4 above of folding 
is one particular case. Perhaps more interesting is considering t he case of various 
proteins which perform useful biological functions. 

Let D be the set of all proteins. Let F be the set of all proteins which pass a 
functionality t est . Let f( x ) be a probability distribution over F. Both F and f( x ) 
can be produced by a simple algorithm using a functionality test on each element of 
D. Consequently, F and f( x ) can be described using a constant program length. 

Consider the average for ASC over all elements in F . 

L f (x )A(x , C,p) = L f( x )( - logp(x) - K (x iC )) 
xEF xEF 

= L -f( x ) log p(x )- L f (x )K (x iC )) (7.36) 
xEF xEF 

Any element x can be described given t he probability distribut ion and 
log f( x ) bits. Given that f( x ) and F can be calculat ed with a const ant program, 
the conditional Kolmogorov complexity can be calculat ed as 

K (x iC ) :::; log - f( x ) + c. (7.37) 
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Place this into equation 7.36. 

L f(x)A(x , C,p) 2 L - f(x) logp(x)- L - f(x) log f(x) - L c (7.38) 
xEF xEF xEF xEF 

The middle term is recognized as the Shannon entropy. 

L f(x)A(x , C,p) 2 L - f(x) logp(x)- H (f)- c L f( x ) (7.39) 
xEF xEF xEF 

If the distribution p is uniform, p( x) = 1A1 , 

L f(x)A(x , C,p) 2 log2 IOI L f(x)- H(f ) - c L f(x) . (7.40) 
xEF xEF xEF 

The two summations over F are summations over a probability distribution and there­
fore 1. 

L f (x )A (x , C,p) 2 log2 IOI- H (f) - c (7.41) 
xEF 

Equation 5 in Durston 's work, adjusting for notation is 

log 101 - H(f ). (7.42) 

T his equation derives from making the same uniformity assumption made above. 
Thus, for the uniform probability distribution case, 

L (f( x )A(x , C,p)) + c 2 log 101- H(f) . (7.43) 
xEF 

This establishes the relationship between ASC and FSC. The difference is that the 
ASC is a lower bound and includes a const ant . This is the same constant as elsewhere: 
the length of the program required to describe the specification. 

4 Objections 

4 .1 Natural Law 

It has been argued in this paper that compressibility in the presence of context is a 
necessary condition for information. This is in contrast to others who have argued 
that lack of compressibility is a necessary condition for information (Abel & Trevors , 
2005) . But compressible objects lack complexity. Because a compressible object is 
describable as some simple pattern, it is amenable to being produced by a simple 
process. Many objects in the real world follow simple patterns. Water tends to 
collect at lower elevations. Beaches follow a sloping pattern. Sparks fly upwards. But 
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these patterns are the result of the operation of simple law-like processes. Even if t he 
explanations for these patterns were unknown , the simplicity of the pattern suggests 
that some simple explanation exist ed . 

The premise behind this use of compressibility is that it identifies what human 
would see as simple patterns. Abel writes: "A sequence is compressible because it 
contains redundant order and patterns" (Abel & Trevors, 2005). 

The problem is that algorithms are very versatile and allow t he description 
of many patterns beyond that which humans would see as patterns. As has been 
shown by the various examples in this paper, many objects which do not exhibit 
what humans typically identify as redundant order and patterns are in fact compress­
ible. Significant ly, funct ionality actually allows compressibility. Contrary to what 
Abel st ates, functional sequences are compressible by virtue of the functionality they 
exhibit. All of the sequences that Abel holds to be mostly incompressible are actually 
compressible. 

But are compressible object s amenable to explanation by simple processes? 
Do all compressible objects lack complexity? If this were t rue, it would be problem­
atic for algorithmic specified complexity because all specified object s would also not 
be complex, and no object would ever be both specified and complex. But many 
compressible objects do not appear amenable to explanation by a simple process. 

As discussed, English text is compressible given a knowledge of t he English 
language. This does not somehow make it probable that English text will appear on 
a beach carved out by waves. Ninety degree angles are very compressible; yet , they 
are not typically found in nature. The existence of an explanation from the laws of 
nature does not appear to follow from compressibility. 

Kolmogorov complexity deliberately ignores how long a program takes to run. 
It is only concerned with the length of the program's description. A program may 
be short but take an astronomical amount of time to run. Many of the specifications 
considered in this paper fall into that category. These object s are compressible, but 
that compression does not give a practical way t o reproduce the object. But if there 
is no practical way to reproduce the object, there is no reason to suggest law-like 
processes as a plausible explanation. 

4.2 Context is Subject ive 

The ASC of any object will depend on the context chosen. Any object can be made 
to have high ASC by using a specifically chosen context . But this appears to be the 
way t hat information works. If t he authors, who do not understand Arabic, look 
at Arabic text, it appears to be no better then scribbling. The problem is not t hat 
Arabic lacks information content , but that the reader is unable t o ident ify it without 
t he necessary context . As a result, this subjectivity appears to capture something 
about the way information works in the human experience. 

As with specification, it is important that the context be chosen that is in-
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dependent of the object under investigation. While a specification will rarely be 
independent of the object under investigation, it is much easier t o maintain this in­
dependence in the case of a context . 

4.3 Incalculability 

It is not possible to calculate the Kolmogorov complexity of an object . However, 
it is possible to upper-bound the Kolmogorov complexity and thus lower-bound the 
algorithmic specified complexity. This means that something can be determined to be 
at least this specified, although the possibility that it is even more specified cannot 
be ruled out . T herefore , even though detecting a specification cannot be achieved 
mechanically, it can be objectively identified when found. 
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