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Abstract: Both Shannon and Kolmogorov–Chaitin–Solomonoff (KCS) information models fail to measure meaningful
information in images. Pictures of a cow and correlated noise can both have the same Shannon and KCS information,
but only the image of the cow has meaning. The application of ‘algorithmic specified complexity’ (ASC) to the problem
of distinguishing random images, simple images and content-filled images is explored. ASC is a model for measuring
meaning using conditional KCS complexity. The ASC of various images given a context of a library of related images
is calculated. The ‘portable network graphic’ (PNG) file format’s compression is used to account for typical
redundancies found in images. Images which containing content can thereby be distinguished from those containing
simply redundancies, meaningless or random noise.
1 Introduction

Humans can readily distinguish meaning in images. However, what
is our theoretical basis for doing so? If we look at a picture of a
sunset, we readily identify it as not being a random assortment of
pixels, but why? Generating an image such as a sunset by
randomly choosing pixels is astronomically improbable. However
this is also true of any given image – even one of pure noise. The
image of a sunset has more meaningful information than that of an
image of random noise. A bit count alone does not measure
meaning. The number of bit can be the same for both images.

Although the term ‘information’ is commonly used, its precise
definition and nature can be illusive. If we shared a digital
versatile disc (DVD), is information being destroyed? What if
there are other copies of the DVD? Is information being created
when we snap a picture of Niagara Falls? Would a generic picture
of Niagara Falls on a post card contain less information than the
first published image of a bona fide extraterrestrial being? These
questions cannot be answered properly with a direct ‘yes’ or ‘no.’
An elaboration on the specific definition of ‘information’ being
used is first required. Shannon recognised his formulation of
information could not be used in all contexts [1, 2].

“It seems to me that we all define ‘information’ as we choose;
and, depending on what field we are working in, we will choose
different definitions. My own model of information theory...
was framed precisely to work with the problem of
communication.”

As a result, different formulations of different information measures
have been proposed to fit various problems. Shannon information
[Thermodynamic entropy motivated Shannon’s naming of
(Shannon) entropy [3]. Thermodynamic entropy is often viewed
through the lens of Shannon information [4]. See, for example,
Bekenstein [5].] [4, 6, 7] and Kolmogorov–Chaitin–Solomonoff
(KCS) complexity [4, 8–15] have served as the foundation in these
proposed model variations [16–21].

For an image to be meaningfully distinguishable, it must relate to
some external independent pattern or specification. The image of the
sunset is meaningful because the viewer experientially relates it to
other sunsets in their experience. Any image containing content
rather than random noise fits some contextual pattern. Naturally,
any image looks like itself, but the requirement is that the pattern
must be independent of the observation and therefore the image
cannot be self-referential in establishing meaning. External context
is required.

If an object is both improbable and specified, we say that it
exhibits ‘specified complexity’ [22–25]. A page of kanji
characters, for example, will have little specified complexity to
someone who cannot read Japanese.

A striking example is the image in Fig. 1. On first viewing, the
image seems to have no specified complexity. During prolonged
viewing, the mind scans its library of context until the meaning of
the image becomes clear.

1.1 KCS complexity

KCS complexity is defined as the length of the shortest programme
required to reproduce a result, in this case the pixels in an image.
KCS complexity is formally defined as the length of the shortest
computer programme, p, in the set of all programmes, P, that
produces a specified output X using a universal Turing machine, U

K(X ) = min
U (p,)=X |p[P

|p|

Such programmes are said to be ‘elite’ [14]. ‘Conditional KCS
complexity’ [9, 10] allows programmes to have input, C, which is
not considered a part of the elite programme

K(X |C) = min
U (p,C)=X |p[P

|p|

C is the ‘context’.
The more the image can be described in terms of a pattern, the

more compressible it is, and the more specified. For example, a
black square is entirely described by a simple pattern, and a very
short computer programme suffices to recreate it. As a result, we
conclude that it is highly specified. In contrast, an image of
randomly selected pixels cannot be compressed much if at all, and
thus we conclude that the image is not specified at all. Images
with content such as sunsets take more space to describe than the
black square, but are more specified than random noise.
Redundancy in some images is evidenced by the ability to
approximately restore groups of missing pixels from those
remaining [27, 28].
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Fig. 1 Image used to demonstrate the difference between eyesight and
vision

Initially, this image appears to be only random splotches of grey. After prolonged
viewing, however, the mind finds context by which to interpret the image.
Once the context is established and the image seen, subsequent viewing will
immediately revert to the contextual interpretation of the image. The object in the
picture is a cow. The head of the cow is staring straight out at you from the centre of
the photograph, its two black ears framing the white face. The picture is widely used
by the Optometric Extension Program Foundation to demonstrate the difference
between eyesight and vision [26]
An image of uniform random noise defies compression. Other
images with stochastic components may be compressible. For
example, a large square with uniform grey level on a black
background is described by a distribution with probability mass at
only two locations and is consequently highly compressive. Small
amounts of noise about this grey level will also be compressible,
but to a lesser extent. It would seem problematic to classify such a
simple image with the images of sunsets or other content. To
account for this, we obliged to model a stochastic process which
can produce such simple images. Which images might be
considered simple depends on the stochastic process being modelled.
1.2 Algorithmic specified complexity

Given a particular stochastic process, we would like to be able to
measure how well a given image is explained by a particular given
stochastic process. The goal is to separate those images which
look like they were produced by the stochastic process from those
which were not. Towards this end we define ‘algorithmic specified
complexity’ (ASC) [22, 23, 25] as

ASC(X , C, P) = I(X )− K(X |C) (1)

where X is the object or event or under consideration, C is the
context, given information which can be used to describe the
object, P(X ) is the probability of X under the given stochastic
model, I(x) =−log2P(X ) is the corresponding self-information and
K(X|C) is the conditional KCS complexity of X given context C.

By taking into account the conditional KCS complexity and the
probability assigned by the stochastic process, the ASC measures
the degree to which an image fits the hypothesised stochastic
process. Given high ASC, we have reason to believe that the
image is unlikely to be produced by that process. In fact, the
occurrence of images with high ASC is rare. Specifically [23]

Pr[ASC(X , C, P) ≥ a] ≤ 2−a (2)

Thus, bounding the probability of obtaining high ASC images when
sampled according to a given distribution. For example, since
230 ≃ 109, we have about one in a billion chance of obtaining 30
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bits of ASC. A large ASC is strong indication that an image was
not produced by the proposed stochastic process.

For the ASC to be small, the conditional KCS complexity must be
small in comparison to the self-information term. However, both of
these quantities must be taken into account before announcing the
degree of meaning in an object. The conditional KCS might be
small because the unconditional KCS is small. Therefore the ASC
cannot be ascertained by inspection of the conditional KCS
complexity alone. The self-information term is mandatory for
indirectly assessing whether the conditional KCS complexity is
small because of rich context or because the original unconditional
KCS complexity is small.

Since KCS complexity is incomputable, ASC is incomputable [4,
14, 29]. However, the true KCS complexity is always equal to or less
than any known estimate of it. We will refer to a known estimate as
the ‘observed ASC’ (OASC). We know that

ASC(X , C, P) ≥ OASC(X , C, P) (3)

Thus OASC(X, C, P) = ASC(X, C, P)− k for some k≥ 0 and

Pr[OASC(X , C, P) ≥ a] = Pr[ASC(X , C, P)− k ≥ a]

= Pr[ASC(X , C, P) ≥ a+ k]

≤ 2−a−k

≤ 2−a

(4)

OASC therefore obeys the same bound as ASC.
ASC is defined based on conditional KCS complexity. The

context enables compression to take advantage of known
information. A picture of a house defies explanation by a simple
stochastic process alone. If we take the context to be a library of
known images, then the similarity should allow us to describe the
new image by making use of details from the library images.
Without the context, images with simple patterns such as simple
shapes or fractals [Interestingly, fractal patterns are well known to
be highly compressible [4] and therefore have an extremely low
KCS complexity. Their KCS complexity is low with or without
context. The ACS of a fractal image will be high if an ill-informed
stochastic model generates a large self-information. If, on the other
hand, the stochastic model includes fractal structures, the
corresponding ACS will be low.] could be deemed compressible,
but it is difficult to see that an image of a house alone would be
compressible. Including context lets us take into account prior
experience and area of knowledge.

Note that the ASC measure is not simply labelling a picture as
belonging to a category such as ‘houses.’ ASC, rather, measures
the difficulty of generating the digital picture of the house exactly
to the pixel level.

A solid black square may be assigned a high probability by a
reasonable stochastic process. It is very compressible and thus
specified, but does not have a level of ASC because of its low
complexity. A random image will be assigned a low probability by
a stochastic process, but it is not compressible and therefore not
specified. As a result, it will not have a high value of ASC either.
A sunset will be given a low probability by a stochastic process
(excluding those designed to produce images of sunsets). It is also
specified because it can be described by a shorter computer
programme. Consequently, the ASC of the sunset image will be
high. The ASC allows us to distinguish between these various
categories of images.

By using a library of images in a number of scenarios, we
demonstrate ASC’s ability to distinguish images with contextual
meaning from those with without. ASC is illustrated for noise,
algorithmic transformations and different camera shots of the same
object.
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1.3 Background

1. History: The idea of ASC model was first presented by Dembski
[22]. The topic was developed and illustrated with a number of
examples [23, 25]. Durston et al.’s ‘functional information’ model
[19] was shown to be a special case of ASC. Application to
intricate artificial life-like patterns designed around Conway’s
‘Game of Life’ show that the ASC can be useful in more complex
environments [24]. Additional history concerning the development
of ASC can be found in our previous work on the subject [23, 24].
2. Distinction: ASC differs from conventional signal and image
detection [30–35] including matched filter correlation identification
of the index of one of a number of library images [36–38].
Alternately, KCS complexity asks for the minimum information
requirements to reproduce an image losslessly (i.e. exactly) –
pixel by pixel.
3. The meaning of meaning: KCS complexity has been used to
measure meaning in other ways. Kolmogorov ‘sufficient statistics’
[4, 29] can be used in a two part procedure to identify the
algorithmically random component of X. The remaining
non-random structure can then be said to have ‘meaning’ [39].
The term ‘meaning’ here refers to the internal structure of the
object under consideration and does not consider the context
available to the observer as is done in ASC.
4. Mixing Shannon and KCS information models: The ASC model in
(1) combines a probabilistic Shannon model with the KCS model of
information. Although the KCS and Shannon models are often
thought of as distinct, they often yield commensurate results. The
expected value of the KCS complexity of a random string of bits,
for example, is close to the corresponding Shannon entropy [4].
The KCS complexity X is approximately equal to the Shannon
self-information corresponding to the ‘universal probability’ of
randomly choosing a computer programme to generate X [4, 29].
The difference of the KCS complexity from the Shannon
self-information determined by universal probability is dubbed the
‘randomness deficiency’ [29].
5. KCS complexity applied to images: On the basis of the notion of
information distance [40], KCS complexity has been proposed as a
tool to compute image similarity [41, 42]. The method uses the
similarity between two binary sequences (or anything mapped to
binary sequences) using conditional KCS complexity. Specifically,
if two images are similar, there should be a set of algorithmic
transformations to convert one image into the other such that less
space is required to describe the transformations than to simply
encode the image directly. Others have worked on the problem of
compressing similar images [43, 44]. The idea is that we should
be able to take advantage of image similarities to compress them
better. The compressibility of similar images is also fundamental
for the work considered here. Without it, using a library of images
Fig. 2 Images of scientists

a Newton
b Pasteur
c Einstein
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to compress related images would not be possible as is discussed
in Section 2.6.2.
6. Relation of ASC to mutual information: ASC models a
methodology whereby humans can assess meaning from sensory
inputs and their experience. According to Tononi [21],
consciousness can be measured in terms of integrated information
denoted by Φ. Gregory Chaitin (the C in KCS) recently opined [45]:

“I suspect Φ has something to do with what in algorithmic
information theory is called mutual information... which is
the extent to which X and Y are simpler when seen together
than when seen separately.”

The ASC measure in (1) bears a resemblance to Shannon mutual
information [7, 4] as a function of Shannon entropy and
conditional entropy

I(X ; Y ) = H(Y )− H(Y |X )

Shannon mutual information is a measure of the dependence of two
random variables X and Y. The maximum of the mutual information
is the channel capacity which determines the maximum rate
communication can occur over the channel without error. The
KCS version of mutual information is [29]

IK (X ; Y ) = K(Y )− K(Y |X )

In the same spirit, the ASC measure in (1) can be thought of as
measuring the resonance between known context and observation
with respect to an interpretive model.
2 Measuring meaning in images

We now show how ASC can be applied to measuring meaning in
images.

2.1 Image library

Fig. 2 shows three pictures of famous scientists which make up the
library of images for our context in this example. For contrast, see
Fig. 3 which shows a solid square and an image of random noise.
These two images are not in the library. The square is very
compressible because of its single solid colour, whereas the
random image is not. Random noise does generally not compress
well.

In the simplest case, we want to compress an image exactly
identical to one in the library. We can easily describe such an
IET Comput. Vis., 2015, Vol. 9, Iss. 6, pp. 884–894
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Fig. 3 Comparison images not included in the library

a Solid grey square
b Random image

Table 1 Details on the various images

Image Complexity
(uniform)

Complexity
(PNG)

KC OASC
(uniform)

OASC
(PNG)

Newton 847 456 520 224 2 847 454 520 222
Pasteur 847 456 543 000 2 847 454 542 998
Einstein 847 456 513 064 2 847 454 513 062
square 847 456 6224 8 847 448 6216
random 847 456 849 008 847 456 0 1552

Constant c is omitted. KC denotes the conditional KCS complexity
image merely by its index in our small library. Thus [We adopt the

commonly used notation A,
+
B to mean A < B + c where c is a

constant. (See e.g. Bennett et al. [40] and Grünwald et al. [8].)
For example, KCS complexity differs from Turing machine to
Turing machine, but is equal up to a constant allowing translation
of one Turing machine language into the other [4, 29]. The length
of the translating programme is independent of the object being
compressed. The c will vary from computer to computer and

description format to description format. Similarly A,
−
B means A

< B− c.]

K(X |C) ,+ log 3
⌈ ⌉ = 2 bits (5)

The images are 284 × 373 pixels in grey scale, with 28 = 256 levels of
grey. The raw grey-scale image encoded directly would require 8 ×
284 × 373 = 847 456 bits. Initially, we will postulate the images were
generated by randomly choosing the grey scale for each pixel
uniformly across all 256 possible values. This would mean that
every possible grey-scale image has an equal probability

Pr[X ] = 2−847 456 (6)

where X is the random variable constituting the image. The Shannon
self-information of an image from this population is then

I(X ) = −log2 Pr[X ] = −log2 2
−847 456 = 847 456 bits (7)

Using the formula for ASC in (1) and the three images as context, we
obtain for any one of the library images

ASC(X , C, P) ≥ OASC(X , C, P) �= 847 456− 2 = 847 454 bits

The rich context provided by the three image library results in each
of the scientist images having significant meaning. Recall that Pr
[ASC > 847 454]≤ 2−847 454 which renders the probability of
generating these images through such a stochastic process as
absurdly improbable.

How does the process fare for a simple pattern such as a library of
equally sized solid squares differing only in grey scale? The square
can be described by its shade of grey which requires 8 bits for 256
grey levels. Using this context, the complete description of a solid
square image is

K(X |C)≤+ 8 bits (8)

Thus, the OASC for the solid square of the same size as the
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scientists’ pictures would be OASC�=847 456− 8 = 847 448 bits.
The square is only slightly less likely to be produced by the
stochastic process than the detailed images of the scientists. This is
because randomly choosing all pixels with the same grey level
using the uniformly distributed stochastic model is extremely
unlikely. The stochastic process we are using does not assign
higher probability to simple patterns.

However, we now define another stochastic process which
does so.

2.2 Self-information based on portable network graphic
(PNG) compression

Lossless compression algorithms can be used to estimate ASC.
Commonly used lossless compression algorithms are based on
Lempel–Ziv compression [46, 47] later improved by Welch to
Lempel–Ziv–Welch (LZW) compression [4, 47, 48]. The
algorithm is used in PKZIP [49], DEFLATE [50] and WinZip
[51]. ‘Graphics interchange format (GIF)’ image compression is
similarly dependent on LZW compression. The limited abilities of
GIF compression has been replaced by the ‘PNG’ compression
[52, 53] which is similarly based on the LZW algorithm.

We will adopt an approximation of complexity based on length of
PNG files. The widely used PNG format is designed to take
advantage of certain redundancies present in images to produce
better lossless compression. Thus, the modelled stochastic process
will produce images containing these sorts of redundancies.
Redundancies such as found in the library of solid squares will not
generate large values of self-information using PNG’s and
therefore do not provide the basis for a high ASC.

The first 8 B of a PNG image file are always the same, so we have
excluded these from the length calculation. We assume that the
probability of an image is thus

Pr[X ] = 2−ℓ(X )−8 (9)

where ℓ(X ) is the length in bits of the PNG file required to produce
the image. Naturally, this gives a self-information value of
I(X ) = ℓ(X )− 8.

Table 1 shows the complexity and ASC for various images under
the two different stochastic models. The pictures of the scientists all
compress to similar lengths in PNG and are thus deemed similarly
complex. The random image is significantly more complex,
whereas the solid square is much less complex. Using the PNG
complexity, the square image with its redundant pixel values has
two orders of magnitude less ASC than the other images. The
square image is much better explained than any of the library
images. It still has a large amount of ASC due, in part, to the high
unlikeliness of creating a solid image by randomly generating
PNG files.

An initially somewhat surprising result is the quantity of ASC
found in the random image when using the PNG complexity
measure. As might be expected, under a uniform distribution over
the 256 possible grey levels, the complexity and specification
cancel each other out leaving absolutely no indication of specified
complexity. However, the PNG-based stochastic model assigns
lower probabilities to images lacking any sort of redundancy. The
absence of redundancy means that the image does not fit the
modelling stochastic process.
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Fig. 5 ASC for varying levels of noise
2.3 Noise

Not all images will be identical to those in the library. For a simple
case consider a noisy copy of an image. The image is the same as the
library version, except that noise has been added to it. To compress
the image, we need to specify both the image in the library as well as
the noise.

(a) For the three images of scientists

K(X |C)≤+ log2 3
⌈ ⌉+ pH(N ) (10)

where p is the number of pixels and H(N ) is the Shannon entropy of
the noise N [54]. Note that only the entropy of the random variable
affects the description length. If we ignore bit levels saturating at 0
and 255, the mean of the variable can be shifted without forcing
the image to use any additional space.
(b) The square image cannot be described as similar to the one in the
library, but it can be described as its base colour with the noise

K(X |C)≤+ 8+ pH(N ) (11)

(c) More generally, adding noise to a random image produces
another random image leaving us with no way of compressing it.
Thus

K(X |C)≤+ 8p (12)

We can now view the ASC as a function of noise for the running
example. Fig. 4, for example, shows the picture of Pasteur as
increasing levels of noise are added. We add uniform random
noise to each pixel. Saturated pixels are shown as either black or
white. Fig. 5 shows the plot of the varying images as levels of
noise are increased. At 0% noise, the image is exactly identical to
Fig. 4 Picture of Louis Pasteur with increasing levels of added noise
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the one in the library. At 100% noise, the image is
indistinguishable from random noise. The ASC of Einstein and
Newton images follow similar curves. There is initially a great
deal of ASC, but this decreases as the noise is increased.
Interestingly, the square has an initial increase in ASC as noise is
added. This is because the PNG file format works very well to
compress a solid square, but does a relatively poor job of
compressing that square with just a small amount of noise.

There is a relatively flat period between 20 and 60%. This is
caused by a closely matched increase in the PNG length of the
images and the KCS complexity of those images. The noise
increases both the complexity of the image as well as decreasing
the specification. These two changes cancel out leaving a slow
change. All of the methods tend towards zero ASC as the noise
reaches 100%.

As expected, the curve for the random image in Fig. 5 is flat and
exhibits very low amounts of ASC.
IET Comput. Vis., 2015, Vol. 9, Iss. 6, pp. 884–894
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Fig. 6 OASC for different resizings
2.4 Scaling

Another possible perturbation of library images on images is scaling.
In this case, we should be able to resize the image from the library to
match the one we are compressing. As long as the image has been
resized in an algorithmic way, we can describe the image by
specifying the value from the library along with the scaling factor.
There are many different possible scaling algorithms, but they will
all simply result in a different constant c for the programme
length. We will represent the scaling factor as (x/1000) and allow
scaling factors from 0 (the image is resized to an image of zero
width and height) to almost 2 (the image is doubled in size). This
corresponds to 2000 different scalings.

(a) We can encode each scientist’s image as the index from the
library along with the scaling factor

K(X |C) ≤+ log2 3
⌈ ⌉+ log2 2000

⌈ ⌉
(13)

(b) The solid square has to be described as the shade of grey and the
scaling factor

K(X |C) ≤+ 8+ log2 2000
⌈ ⌉

(14)

(c) Finally, for the random image, scaling up can be described as the
original random image and the scaling factor

K(X |C) ≤+ 8p+ log2 2000
⌈ ⌉

(15)
Fig. 7 Magnified scales of Einstein

Images are scaled using bicubic interpolation [54]
Left: original, middle: (1/4) scale and right: (1/6) scale
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where p is the number of pixels in the pre-scaled image. However,
KCS complexity is defined as the shortest programme that
produces the result and this is not the most efficient method to
describe a scaled down random image. Rather we can encode the
image directly

K(X |C) ≤ 8 s (16)

where s is the number of pixels in the scaled image. Note that when
s = p both methods will be approximately equal in length.

Fig. 6 shows the ASC for the images and varying resizes. For the
scientists, the OASC increases as the scale does. It increases quickly
for scales below one, whereas it increases slowly for scales above 1.
This is because scaling up the original images introduces redundancy
into the images which PNG compresses. Thus, the complexity
increases slowly. Scaling down the image loses information, thus
exhibiting a rapid decrease in OASC. This is evident in Fig. 7
where scaled down versions of Einstein are shown magnified. On
the right, for example, the details of the vest buttons and of the
pencil Einstein is holding have been obliterated. Random noise
slows the OASC increase after passing the 1.0 point as well.
Although the base image is random, redundancy is introduced by
the scaling process.
2.5 Repeated element

Figs. 8a and b show two images which both share a stick man figure.
Otherwise the images are random noise. Using the image in Fig. 8a
as our context, we will attempt to compress the image on the right.
The second image can be described as the stick figure from the
first image together with the difference encoded as an image. The
difference is shown in Fig. 8c. Note that the noise in the bounding
box of the stick man in Fig. 8c is calculated such that adding it to
the noise around the stick figure in the library image will produce
the noise from the target image. Table 2 shows the number of bits
required to describe the images by PNG. To actually describe the
image then requires specifying the bounding box of the stick man
in the original image (four coordinates) as well as the target in the
current image (two coordinates). Since the images are 400 × 400
pixels, this requires

6log2 400 ≃ 52 bits (17)

Thus

K(X |C)≤+ 52+ ℓ (18)
889



Fig. 8 Stick men on a sea of noise

a Context stick man
b Stick man image
c Difference image
where ℓ is the length of the PNG compression of the difference

image. In this case, ℓ = 211 576 so K(X |C) ≤+ 211 628 and
ASC �≥ 216 496− 211 628 = 4868 bits. The object being in a
different location and the random background noise did not
prevent ASC from being observed. The target image contains
information by virtue of containing the same stick figure as the
original image.
2.6 Photographs

2.6.1 Offset and difference OASC: Two photographs taken of
the same object will differ slightly in all sorts of ways. For example,
Fig. 9 Collection of images

Table 2 PNG complexity length for the various man images

Name PNG complexity

context 216 568
image 216 912
difference 211 712

890
the picture may be shifted and the noise different. Fig. 9 shows a
collection of images [55]. Each image is representative of a
collection of photos taken of the same object from slightly varying
positions. These images can be aligned by shifting the image by
an offset. We take these representative images as our context, and
attempt to compress other images in the collection. We do this by
recording the needed offset as well as a difference image; samples
of which are shown in Fig. 10. Each image can be described as

K(X |C)≤+ log2|L| + log2 w+ log2 h+ ℓ (19)

where L is the set of images in the library, w and h are the height of
the image and ℓ is the PNG length of the difference image. The
log2|L| term is to determine which image from the library should
be used. The w and h are present to specify the offset between the
library image and the image under inspection.

Figs. 11–16 show scatter plots of the OASC. Each point is a single
image’s ASC using the context of the images shown in Fig. 9. The
x-axis is the Manhattan distance of the shift required to line up the
two images. For most of the collections, the ASC moves towards
IET Comput. Vis., 2015, Vol. 9, Iss. 6, pp. 884–894
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Fig. 10 Aerial city shot difference images
zero as the required shift increases. An exception is the tiger images
in Fig. 14 which maintain most of their ASC value. Fig. 12 has an
outlier where the difference image compressed poorly, but the
overall trend remains. This is because the tiger image is a
photograph of a photograph and thus lacks three-dimensional
effects. However, images with small shifts contain significant
amounts of ASC. This means that we can conclude that the other
images are not simply random noise. They share too much
similarity with the random image to be generated by a stochastic
process, even one that introduces redundancies into images.

2.6.2 ASC from measuring compression file sizes only:
Compression algorithms used in Section 2.2 to evaluate the
self-information term in ASC can also be used to estimate KCS
complexity [56–58]. The size of the compressed object X is an
upper bound for K(X ). We will call this estimate KO(X ).

To illustrate the potential use of compression in evaluating OASC,
consider again the images of Newton and Pasteur in Fig. 2. Both
Fig. 11 OASC values for aerial shot of toy city
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images are scaled to 300 × 400 pixels. Assuming a byte per pixel
and a random stochastic model for image generation, both
therefore have a self-information of

I(N ) = I(P) = 300× 400× 8 = 960 000 bits = 120 kB (20)

where we have used P for Pasteur and N for Newton. The PNG file
sizes for the two images are

KO(N ) = 74 kB and KO(P) = 76 kB (21)

Consider, then, placing identical images of Newton side-by-side
forming a 600 × 400 image. The number of pixels has doubled.
We expect that K(X , X )=+ K(X ). The PNG compression captures
the redundancy since the size of the side-by-side images is KO(N,
N ) = 77 kB. This is just a tad more than 74 kB in (21). We can do
Fig. 12 OASC values for rocks
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Fig. 13 OASC values for tiger

Fig. 14 OASC values for another toy city

Fig. 16 OASC values for front shot of city
similar compressions for identical images of Pasteur, and then a
picture of Newton placed next to a picture of Pasteur. We obtain
the following PNG file sizes

KO(N , N ) = 77 kB; KO(N , P) = 148 kB

KO(P, N ) = 148 kB; KO(P, P) = 80 kB
Fig. 15 OASC values for another toy city (lighter)
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There is little redundancy of which to take advantage when the two
images are different. The value of KO(N, P) is therefore larger.

Since [The notation =O means equality is true up to an additive
object-dependent log term, in this case O(logK(X, Y ))] [59, 60]

K(X , C)=O K(X |C)+ K(C) (22)

the value of these simple compressed files can be used to estimate the
conditional KCS when either the Newton of the Pasteur image is
used as context

KO(N |N ) = 3 kB; KO(N |P) = 72 kB

KO(P|N ) = 74 kB; KO(P|P) = 3 kB

This allows computing of the OASC’s using the self-information
in (20)

OASC(N , N , I) = 117 kB; OASC(N , P, I) = 48 kB

OASC(P, N , I) = 46 kB; OASC(P, P, I) = 117 kB

As expected, the OASC of an image of Newton given the same
image of Newton as context is very high as is the OASC of
Pasteur given Pasteur. Moreover as expected, the cross-cases
(Newton given Pasteur and Pasteur given Newton) have a much
lower OASC.[Although the relative sizes of the OASC values are
most important, cross-term OASC’s of 48 and 46 kB are still
pretty large. They are a result, in part, of the stochastic model we
used for I(x) which will, with probability close to one, give an
image of noise. This follows from the asymptotic partition
theorem [4, 61]. Moreover, (i) both images have dark backgrounds
and (ii) we have not accounted for additive term (from the =O ) in
(22).]

This simple example illustrates that estimation of ASC can be
performed using only the size of compressed files. The
applications in data mining are obvious using as context, for
example, an ordered bag-of-words [62, 63]. Doing so, although,
requires compression that effectively takes into account
redundancies that bring the compressed file close to the true KCS
complexity. PNG compression and more generally LZW
compression works well on shift-invariant [64, 65] (also known as
isoplanatic [66, 67], space-invariant or time-invariant) redundancy.
PNG comparisons of a shifted versions and Newton next to an
unshifted Newton compresses well. Redundancies in shift-variant
operations [68–74], such as rotation, scale and transposition, are
not captured well by PNG compression. If, for example, the
picture of Newton were placed side-by-side with a 90° rotation of
the same image, the available redundancy is not taken advantage
of by PNG compression. To broadly apply the method of
IET Comput. Vis., 2015, Vol. 9, Iss. 6, pp. 884–894
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evaluating files using this technique, compression programmes that
take advantages of shift-variant redundancy should be used.
3 Conclusion

We have proposed ASC as a methodology to measure the meaning in
images as a function of context.

We have estimated the probability of various images by using the
number of bits required for the PNG encoding. This allows us to
approximate the ASC of the various images. We have shown
hundreds of thousands of bits of ASC in various circumstances.
Given the bound established on producing high levels of ASC, we
conclude that the images containing meaningful information are
not simply noise. Additionally, the simplicity of an image such as
the solid square also does not exhibit ASC. Thus, we have
demonstrated the theoretical applicability of ASC to the problem
of distinguishing information from noise and have outlined a
methodology where sizes of compressed files can be used to
estimate the meaningful information content of images.
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